A Simple Geometric Model for Elastic Deformations

Ulrich Pinkall
TU Berlin

Isaac Chao
Caltech

Abstract

We advocate a simple geometric model for elasticity: distance
between the differential of a deformation and the rotation group. It
comes with rigorous differential geometric underpinnings, both
smooth and discrete, and is computationally almost as simple and
efficient as linear elasticity. Owing to its geometric non-linearity,
though, it does not suffer from the usual linearization artifacts. A
material model with standard elastic moduli (Lamé parameters)
falls out naturally, and a minimizer for static problems is easily
augmented to construct a fully variational 2 order time integra-
tor. It has excellent conservation properties even for very coarse
simulations, making it very robust.

Our analysis was motivated by a number of heuristic, physics-like
algorithms from geometry processing (editing, morphing, param-
eterization, and simulation). Starting with a continuous energy
formulation and taking the underlying geometry into account,
we simplify and accelerate these algorithms while avoiding com-
mon pitfalls. Through the connection with the Biot strain of
mechanics, the intuition of previous work that these ideas are
“like” elasticity is shown to be spot on.

Keywords: Digital Geometry Processing, Discrete Differential
Geometry, elasticity, geometric modeling, shape space interpola-
tion, morphing, parameterization.

1 The Elastic Energy

We jump right into the meat of things and defer discussion of
relations to previous algorithms until we complete our setup.

Given a smooth map f : M — M, f(p) = q describing the de-
formation of a reference configuration M C R" into a deformed
configuration M C R", we study the energy

E(f)z%f dist(df,so(n))zzgf min |df —RP. (D)

M ReSO(n)

At a point p € M, the integrand measures the distance between
the deformation differential, df , and the nearest rotation, thus
characterizing how far f is from an isometry. (Our df corre-
sponds to what is often called the deformation gradient F in
mechanics.) In 2D this is the setting of planar morphing and
parameterization while the 3D case principally covers solid me-
chanics.

A minimizer of E(f) subject to boundary conditions is character-
ized by vanishing variations &,E(f) := i —oE(f +€g)=0. Let

ACM Reference Format

Chao, I, Pinkall, U., Sanan, P., Schréder, P. 2010. A Simple Geometric Model for Elastic Deformations.
ACM Trans. Graph. 29, 4, Article 38 (July 2010), 6 pages. DOI = 10.1145/1778765.1778775
http:/doi.acm.org/10.1145/1778765.1778775.

Copyright Notice

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage

and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1
(212) 869-0481, or permissions@acm.org.

© 2010 ACM 0730-0301/2010/07-ART38 $10.00 DOI 10.1145/1778765.1778775
http:/doi.acm.org/10.1145/1778765.1778775

Peter Schroder
Caltech, TU Miinchen

Patrick Sanan
Caltech

g be an arbitrary admissible variation. Then,

5gE(f)=f

M

(dg —6,R,df —R) = J (dg,df —R), (2)
M

where (A, B) = tr(ATB) denotes the standard inner product be-
tween linear maps and R € SO(n) the minimizer of the squared
distance (dropping explicit mention of its dependence on df).
We have used df —R L 6,R, which follows from R being critical
with respect to the squared distance; thus, no derivatives of R
appear in the gradient of E.

Due to the dependence of R on df, the Euler-Lagrange equation
is a non-linear Poisson problem

Af =divR.

The energy Hessian follows from taking a further variation h

52, E(f) = f

M

(dg,dh) — f (dg, 64R).

The first term is the standard Laplace-Beltrami operator which
does not depend on f, while the second term varies with f
through the dependence of R on df. Here variations of R do
enter since they are in general not orthogonal to dg.

2 Discrete Setting

Fromnow onlet M = (V,E,F) or (V,E,F, T) be a 2- or 3-manifold
simplicial complex consisting of vertices, edges, triangular facets,
and, possibly, tetrahedra, with associated initial vertex positions
p; € R? resp. R®. The deformation function f is given as a piece-
wise affine mapping from p; to new positions q;. The integral
over M becomes a sum over triangles resp. tetrahedra. The cor-
responding discrete energy in 2D is the well known piecewise
linear Dirichlet energy [Pinkall and Polthier 1993]

1 1 ijk
1 J ldf —RP=1 " cota, g, — R7*p,l2,
Dijk eap€{i,j .k}

where a;, denotes the angle at c opposite edge e,;; Py = Pp — Pa>
the directed edge from p,, to p,; and q,; its image under df . Note
that RY* is constant per triangle since df is. The corresponding
cotan formula for a tetrahedron [Meyer et al. 2002] is

f ldf =RP =2 7 Ipealcotatlge — R py, 2,
DPijkl eap€1i,jk,1}

with a¢d the dihedral angle opposite e, i.e., at edge e.q and R/
constant per tetrahedron.

To minimize this energy with standard Newton trust region
solvers [Benson et al. 2007] we need its gradient and Hessian.

2.1 The First Discrete Variation

This is now just a matter of differentiating the above expressions
with respect to the g;. For a single triangle {i, j, k} we obtain

0,E(q) = %(cot aﬁ‘jqﬁ + cota{qui) —Rijk%(cot ai.‘jpji + cotafkpki)

The first term represents a summand in the Laplace-Beltrami
operator applied to the g variables, while the second term is the

ACM Transactions on Graphics, Vol. 29, No. 4, Article 38, Publication date: July 2010.

38:2 . I. Chao et al.

area gradient of the original triangle p;; with respect to vertex i

rotated by RV%. As in the continuous setting (Eq. (2)), criticality
ensures that no derivatives of R7* appear in the discrete setting.
These expressions are summed for all triangles incident to vertex
i. The sum of the rotated area gradients is the divergence of the
rotations incident on vertex i.

The expression for a tetrahedron is entirely analogous with terms
evaluating the Laplacian of g and the volume gradient of the
tetrahedron p; 5, with respect to vertex i, rotated by RV, Fully
detailed expressions are contained in the attached C++ code.

2.2 The ClosestR

For a df with positive determinant, R is most efficiently found by
computing the right polar decomposition df = RY with Newton’s
algorithm [Higham 1986, p. 1168] (with warm start). In case of
inverted elements (detdf < 0) the polar decomposition returns
an orientation reversing orthogonal transformation instead of the
closest rotation. In these cases, as well as for singular df, the
closest rotation (or a closest rotation for rank 0 or 1 in 3D resp.
0 in 2D) is given as a simple function of the SVD [Myronenko
and Song 2009, Lemma 1]. The more costly SVD procedure is
invoked only for df with non-positive determinant. (In practice
we use detdf < e which also covers all rank deficient cases.)

Comment on inverted elements The distance |df — R|? is always
continuous, even as the element inverts. (Additionally it is smooth
if detdf > 0 or detdf <= 0 and the smallest singular value is
unique.) The energy only increases for an inverted element since
the nearest rotation is further away. Compare this to fourth order
measures such as |df Tdf — I|*. In that case a mirrored tetrahe-
dron df = —I has zero strain. This has led to the development of,
at times elaborate, measures to deal with inverted elements in
elasticity (see, e.g., [Irving et al. 2004; Schmedding and Teschner
2008]). In our setting we merely need to ensure that the nearest
rotation and not by accident the nearest orientation reversing
orthogonal transform is computed.

Comment on performance One could use an SVD in all cases
but we do not recommend this for performance reasons. Over a
broad set of simulations we found that 10% of the entire runtime
is spent computing R. Within the R routine only about 1-3% of
all calls invoke the SVD, but those few calls consume 10-20% of
the time in the R routine. Because the polar decomposition (with
warm starts) is so much cheaper than the SVD, using the SVD
every time would increase overall runtime by 50% or more.

The resulting algorithm is quite robust as demonstrated by a
“torture test:” the tetrahedralized Dragon model, scaled by —3/4,
is used as an initial configuration. In this configuration every
tetrahedron is inverted and squished, yet the original shape is
quickly recovered without any adverse effects (see the attached
movie).

2.3 The Second Discrete Variation

It produces the standard cotan-Laplace operator—independent
of f—and an additional term which depends on f (through Y
and R) and is constant per triangle resp. tetrahedron

(dg,5,R) = 4 (X(R"dg),X(R"dh)) ®3)

a weighted (by W) scalar product of the anti-symmetric part
(X(.) denotes extraction of the anti-symmetric part of a matrix)
of the backward rotated differentials of the variations g and
h. In practice this expression amounts to a linear combination
of precomputed outer product matrices multiplied by R and

ACM Transactions on Graphics, Vol. 29, No. 4, Article 38, Publication date: July 2010.

the weight matrix, which is a simple linear function of Y (see
App. B). Fully detailed expressions can be found in the attached
C++ code.

Implementation notes Ignoring file I/O and display routines, our
overall code is quite compact and consists of four main compo-
nents: energy, gradient and Hessian callbacks, as well as the polar
decomposition resp. SVD routine to find the nearest rotation. The
callbacks iterate over the mesh data structure, evaluating energy,
gradient, and Hessian expressions on a per element basis (as
given above and documented in the attached code), accumulat-
ing the results as they go along. Owing to the use of standard
black box Newton trust region solver [Benson et al. 2007]—to
which the callbacks are passed—Ilittle else is needed to produce
all results shown in this paper.

3 Elasticity Simulation

To get a material model with Lamé parameters we note that
the difference df — R = R(Y —I) can be further decomposed
orthogonally into a trace-free part and a multiple of the identity

n

Y—I=(y -0+ (52— 1)1 =¥ +yI

with n = 2,3 the dimension of M. Each can now be weighted
independently with a > 0 (bulk deformation) and 8 > 0 (shear
deformation)

E p(f)= f BT +aylIl = J BT+ 2 (ee(Y) — n).

The energy density for an isotropic Hookean material, (o, €) with
o =2ue+Atr(e)l and Lamé parameters u and A maps to E, 5(f)
fore=Y —1I,2u =% and A = (a® — *)/n. With E, z(f) we
have a geometrically non-linear elastic potential energy with
standard material parameters and a minimization solver can find
static equilibrium configurations of elastic bodies. (The corre-
sponding gradient and Hessian expressions, as functions of a and
B, are included in the attached code samples for the first and
second variation.) Figure 1 demonstrates deformations and the
influence of the a and 8 parameters.

=
=
A
st
ST

Figure 1: Examples of tetrahedral mesh compression (down to 53%
height) and expansion (up 135% height) for different a parameters.

Dynamics simulations are a straightforward extension of the
static elasticity case and many avenues are possible. For our
experiments we implemented the fully variational integrator (FVI)
of [Kharevych et al. 2006], based on the stationary Hamilton-
Pontryagin principle. We chose it because it exhibits—like all
variational integrators [Marsden and West 2001]—excellent long
term energy stability and exact preservation of momenta, even
for large time steps. From a practical point of view an FVI has
the significant benefit that it converts the usual non-linear root
finding problem in the time stepper into an energy minimization

 FirstDiscreteVar.cpp

FirstDiscreteVar.cpp// machinery for first variations for tets

// the actual code computes quantities on a per tet basis and puts
// them into the data structures for the minimizer. This implies a
// loop over the tet and some mapping from the local vertices into a
// global array. For clarity this is left out and we treat a tet all
// by itself.

class Tet{
 // p dependent (i.e., constant) section
 Vec3 p[4]; // original configuration
 Vec3 VolGrad[4]; // vol grad wrt vertex i=0,1,2,3
 double we[6]; // edge weights of 3D Laplace
 double vol; // volume of original tet
 Mat3x3 Curl[4]; // Precomputed opposing edge outer product sums

 // q section which needs to be updated as we go along
 Vec3 q[4]; // current deformed configuration
 Mat3x3 R; // optimal rotation for current q
 Mat3x3 Y; // symmetric factor for current q
 Mat3x3 W; // weight matrix in second part of Hessian
};

Tet::Init(){
 // compute all quantities depending on p alone
 // compute: vol, VolGrad, we, Curl, R=Id() and store
}

Tet::ComputeVolGrad(int i){
 // volume gradient wrt to p_i (i=0,1,2,3)
 int j = (i+1)%4, k = (i+2)%4, l = (i+3)%4;
 // units of m^2
 VolGrad[i] = (p[k]-p[l]).cross(p[j]-p[l])/6;
}

// used to fill we[] array
double
Tet::ComputeEdgeWeight(int i, int j){
 // weight in Dirichlet energy for edge ij
 // assumes volume gradients are initialized
 // units of (m^2)^2/m^3 = m
 return -VolGrad[i].dot(VolGrad[j])/vol;
}

Vec3
Tet::LaplaceQ(int i){
 // use precomputed cot*edgelength weights
 int j = (i+1)%4, k = (i+2)%4, l = (i+3)%4;
 // e() maps from two index pairs to one of 6 edges (e(i,j)=0,1,2,3,4,5)
 return
 we[e(i,j)]*(q[i]-q[j]) + we[e(i,k)]*(q[i]-q[k]) + we[e(i,l)]*(q[i]-q[l]);
}

Vec3
Tet::Grad(int i, double alpha, double beta){
 // gradient of energy wrt to i
 // assumes R and Y are current wrt q
 const double a2 = alpha*alpha, b2 = beta*beta;
 return b2*LaplaceQ(i) - (a2-(a2-b2)*Y.Trace()/3)*R*VolGrad[i];
}

C++ code for the assembly of the 1st variation from p and q data on a per tetrahedron basis.

filpdragon_iters.mp4

Avidemux

Avidemux

The dragon is multiplied by -3/4, inverting every tetrahedron and squishing it; the original shape is quickly recovered, demonstrating the robustness in the face of massive numbers of inverted tetrahedra.

 SecondDiscreteVar.cpp

SecondDiscreteVar.cpp// machinery for the second variations for tets

// the actual code computes quantities on a per tet basis and puts
// them into the data structures for the minimizer. This implies a
// loop over the tet and some mapping from the local vertices into a
// global array. For clarity this is left out and we treat a tet all
// by itself.

class Tet{
 // p dependent (i.e., constant) section
 Vec3 p[4]; // original configuration
 Vec3 VolGrad[4]; // vol grad wrt vertex i=0,1,2,3
 double we[6]; // edge weights of 3D Laplace
 double vol; // volume of original tet
 Mat3x3 Curl[4]; // Precomputed opposing edge outer product sums

 // q section which needs to be updated as we go along
 Vec3 q[4]; // current deformed configuration
 Mat3x3 R; // optimal rotation for current q
 Mat3x3 Y; // symmetric factor for current q
 Mat3x3 W; // weight matrix in second part of Hessian
};

Tet::ComputeCurlMatrices(){
 // for the second term in the Hessian; precompute fixed matrices
 const int i = 0, j = 1, k = 2, l = 3;
 // six edges
 const Vec3
 pij = p[j]-p[i], plk = p[k]-p[l], pik = p[k]-p[i],
 pjl = p[l]-p[j], pil = p[l]-p[i], pkj = p[j]-p[k];
 // outer products of opposing edges in the needed linear combinations
 // could be optimized further, but is only precomputation, so don't bother
 Curl[i] = pij.Outer(plk) + pik.Outer(pjl) + pil.Outer(pkj);
 Curl[j] = pij.Outer(plk) + pjl.Outer(pik) + pkj.Outer(pil);
 Curl[k] = plk.Outer(pij) + pik.Outer(pjl) + pkj.Outer(pil);
 Curl[l] = plk.Outer(pij) + pjl.Outer(pik) + pil.Outer(pkj);
}

Tet::ComputeW(){
 // assumes Y is current at time of call
 // this is a weighting factor which depends on q (through Y)
 W = (Y.Trace()*Id(3)-Y).Inv();
}

Mat3x3
Tet::HessianSecondPart(int i, int j){
 // computes local stiffness contribution from varying p_i,p_j
 // assumes Curl[] has been intialized
 // assume R and W are current at time of call
 Mat3x3 RMi = R*Curl[i], RMj = R*Curl[j];
 // member function T() returns transpose
 return RMi*W*RMj.T()/(36*vol);
}

Mat3x3
Tet::HessianFirstPart(int i, int j){
 // Laplace part
 // we[] are the original Laplace edge weights indexed by edge
 if(i == j){ // diagonal entry
 // negative sum of off-diagonal entries in that row
 // e(a,b) maps a,b=0,1,2,3 to edge number 0,1,2,3,4,5
 return Id(3)*(we[e(i,(i+1)%4)]+we[e(i,(i+2)%4)]+we[e(i,(i+3)%4)]);
 }else{
 return -Id(3)*we[e(i,j)];
 }
}

Mat3x3
Tet::HessianSecondPartABSplit(int i, int j){
 // when \alpha \neq \beta this part splits off and is linearly combined
 // assumes R is current at time of Call
 //
 // the outer product between VolGrad's could be precomputed, but we
 // would have to store 10 of them (symmetric part of 4x4 matrix) and
 // don't want to burn the memory
 return (R*VolGrad[i]).Outer(R*VolGrad[j])/vol;
}

Mat3x3
Tet::TotalHessian(int i, int j, double alpha, double beta){
 const double a2 = alpha*alpha, b2 = beta*beta;
 if(alpha == beta){
 return a2*(HessianFirstPart(i,j)-HessianSecondPart(i,j));
 }else{
 return
 b2*HessianFirstPart(i,j)-
 (a2-(a2-b2)*Y.Trace()/3)*HessianSecondPart(i,j)+
 (a2-b2)/3*HessianSecondPartABSplit(i,j);
 }
}

C++ code for the assembly of the 2nd variation from p and q data on a per tetrahedron basis.

C++ code for the assembly of the 1st variation from p and q data on a per tetrahedron basis.

C++ code for the assembly of the 2nd variation from p and q data on a per tetrahedron basis.

AngulariLinear Momentum
L

)
’ SRR, 4
SRR
L Weraveyaia sy
42
004 £ pEX
= Y T
ooy SRaise
WDQZ
N ot
0.01 o
¥ g
2 0 5 [ERY
" AEV

8 10
Timestep

Figure 2: Tracking the momentum and energy of an elastic body
with some initial motion and bending deformation. Momentum
and energy are tracked precisely even for very long simulation runs.

problem. And this is achieved with only a minor modification to
the energy minimization code we already have!

Assume per vertex momentum (p*), position (¢*), and velocity
variables (v*) indexed by discrete time k > 0. Define an ancillary
energy

e(@):= 2@ —q)"M@a—a)+W(@) - 26" (a9,

with h denoting the time step size, M the mass matrix, and
W(.) = E,g(.) the elastic potential of the body. Define q* =
argmin, £(q), then the transition k — k + 1 proceeds as

Uk+1 — %(q* _ qk)
CIk+1 — qk +hUk+l
pk+1 — MUk+1 _ ggrad W(qk + %hnk+1)

Minimization of &(q) requires its gradient and Hessian. Both
are simple modifications of the corresponding expressions for

W(q) =E,z(q)

gradW(q) + xM(q—q*) - 2p*
HessW(q) + 75 M.

grad e(q)
Hesse(q) =

In this manner the existing minimization code needs only a small
modification to serve as a time stepper for dynamics simula-
tions. To complete the system one would likely want to add
external forces and damping and we refer the interested reader
to [Kharevych et al. 2006] for the details. There one also finds
the derivation of the energy minimization time stepper.

Figure 2 demonstrates the exact momentum conservation and
long term stable energy behavior which distinguish these integra-
tors. A more complex example is given in Figure 3.

Insight The simple energy of Eq. (1), measuring the distance
between the differential of the deformation and the rotation
group, provides a full-fledged model for isotropic elasticity, in
particular when this difference is further decomposed into the
orthogonal subspaces of trace-free matrices and multiples of the
identity.

In the mechanics literature a linearized version of Y —I is known
as the Biot strain [Biot 1938]. It is the first order entry in a
ladder of generalized Lagrange strains with the standard Green-
Lagrange strain df Tdf — I = Y2 — I as the second order member.
Because Y — I is lower order in the state variables, it is computa-
tionally far more attractive. Compare, e.g., the efforts to “reign in”
the computational complexity of the standard Green-Lagrange
strain undertaken in [Kikuuwe et al. 2009].

A Simple Geometric Model for Elastic Deformations . 38:3

|
g

)
_fAVAvs
Lo

e
o

4
i Y
e

T
S
o

i
\.";
i

Figure 3: A Bunny being dropped and colliding with the ground
plane with no damping whatsoever. The energy is perfectly pre-
served. (See also the attached movie.)

Shape matching approaches to qualitative physics simula-
tions [Miiller et al. 2005] use reasoning reminiscent of our energy.
Considering groups of nearby points, they use a shape matching
metaphor to determine the best fit rigid transform of the group of
points from initial to deformed configuration. The resulting rota-
tion R arises from the polar decomposition of RY = df I,, where
I, is the inertia tensor of the point set (up to a scale factor).
This additional factor of I,, makes the resulting R dependent on
the shape of the group of points. As a consequence the material
behavior may become anisotropic if the groups of points are not
isotropic in shape. No continuous energy is given.

3.1 Relationship to Co-Rotational Methods

Per element rotations applied to df appear also in co-rotational
methods [Rankin and Brogan 1986]. These have become popular
in computer graphics since [Miiller et al. 2002; Etzmuf et al.
2003] as a post facto fix for the disturbing artifacts due to the
linearized Green-Lagrange strain (df Tdf —I) ~ (df T +df)/2 —
I when large deformations or rotations occur. We emphasize
that this is quite different from our non-linear setting which
uses R to measure the distance from df to an isometry. The
following experiment demonstrates that this difference is not
mere semantics.

g

[w 1 !’U\H\J (U0

— VW

OOy

I UV
VIVAW w

Figure 4: Comparison of our non-linear energy (left) with a co-
rotational method (right). Linear and angular momenta (6 lines)
and energy (kinetic, potential, total) are shown in the plots. For
our non-linear energy, momenta are exactly preserved and total
energy stays within a small constant band. Fixing rotations at the
beginning of each time step (co-rotational) destroys these system
invariants. See also the attached movie.

We will fix the rotations at the beginning of each time step. Now
the backward rotated RTdf at each element gives the strain used
in a co-rotational method. The time stepper energy minimization
is quadratic and a single solve moves from k — k + 1 (the inte-
gration is still a 2™ order accurate implicit method). Figure 4

ACM Transactions on Graphics, Vol. 29, No. 4, Article 38, Publication date: July 2010.

bunmov8.mp4

Avidemux

Avidemux

Movie of Bunny drop

cube_fixvar_sidebyside.mp4

Avidemux

Avidemux

Movie comparing the variational integrator (left) with a co-rotational method (right); the latter uses a rotation fixed at the beginning of the time step, while the former treats the rotation as a variable throughout each time step; the co-rotational method suffers from loss of invariants while the variational integrator does not.

38:4 . I. Chao et al.

shows what happens in a comparison with the non-linear energy.
An elastic body in 3D is subject to some initial momentum and
a twist/compression without any external forces. Time step size
was identical in both cases. At the bottom of each image are
graphs of momenta (left) and energy (right). For this simulation
they should stay constant and they do when using the non-linear
energy in contrast to the co-rotational method.

Numerical vs. variational damping The numerical damping in
the co-rotational method causes not only loss of energy and mo-
mentum invariants, but also depends on time step size. This is
illustrated in an attached movie showing side by side runs with
stepsizes of 0.01 and 0.002 (the latter subsampled by 5 for dis-
play). With the rotation fixed at the beginning of the time step,
the state determined for the end of the time step uses the wrong
(old) rotation, assigning potential energy to the incremental rota-
tion during the time step. When the rotation is then reset at the
beginning of the next time step, this energy is lost. Numerical
experiments easily verify this lossage mechanism. As illustrated
in the video smaller time steps can lessen, but never fix this phe-
nomenon. There is always some potential energy, corresponding
to a small but finite rotation, which is discarded.

In application practice one generally wishes to have damping,
but it should not depend on the time step size. This is easily
achieved with variational damping (for details see [Kharevych
et al. 2006]) as demonstrated by the side by side comparison
in the attached movie. Again 0.01 and 0.002 time step sizes
are compared. Linear and angular momentum are conserved,
but energy (due to losses in the potential energy) decays at the
selected rate even though the time step sizes are different by a
factor of 5.

Analysis The increased robustness due to conservation of system
invariants in our method comes at a cost: additional linear system
solves invoked by the Newton solver and computation of the
additional terms in the Hessian (Eq. (3)). The latter adds only
3.5% total runtime overhead and we consider it negligible. To
compare the methods we count the total number of iterations
in the linear algebra solver over the entire run: 3113 for the
co-rotational and 7959 for the non-linear energy. One could
therefore compare with a co-rotational method run at one third
the step size. As demonstrated above (for a reduction in stepsize
by a factor of 5), this does not fix the problem of the co-rotational
formulation, it only lessens the rate at which system invariants
are lost. The inclusion of the additional term in the Hessian
(Eq. (3)) is essential.

4 Other Applications

4.1 Parameterization

The 2D case of Eq. (1) was studied by Liu et al. [2008] for pur-
poses of surface parameterization. They treated the energy as a
functional depending on both df and R and optimized each in
an alternating manner, fixing R to find the best df, updating R
to be optimal, and repeating until convergence. They also con-
sidered distance to the closest similarity and describe a mixed
functional (their Eq. 5) which trades off similarity against isom-
etry. However, in that functional the isometry constraint enters
to fourth order (their (a? + b% — 1)?), while we can control the
trade-off with only second order. For (@ = 0,8 = 1) we get
as-similar-as-possible (ASAP) solutions and for (¢ = f# = 1) as-
rigid-as-possible (ARAP) (see Fig. 5 and compare with Fig. 7 of
Liu et al.), with a € [0, 1] controlling the trade-off.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 38, Publication date: July 2010.

o 5}
K
A #‘h%‘;ﬁu
RRERRE
RS
o

e
K

&

o
s
ROREK

X
%)
%
s

::égs %5»
O
5
X
o

s
PAK]
OO

A0

&

Pt

:

5

AZAK
Ok

R0
0
e

Figure 5: Our method applied in the 2D setting of parameterization.
For a =0, B =1 ASAR i.e., discrete conformal maps result, and
for a = 8 =1 ARAP maps similar to Liu et al. result.

Comparison The alternating minimization approach of Liu et al.
has the advantage of only using a constant system matrix, the
Laplace-Beltrami operator, which may therefore be pre-factored.
In our Newton solver the Hessian changes and thus cannot be pre-
factored. But the number of iterations are far fewer for us than
in their alternating solver because of the quadratic convergence
of Newton versus their linear convergence (see Fig. 6 for data
from the 3D case; the results are similar in 2D). We also require
no specific isometry constraints (of higher order) to manage the
trade-off between similarities and isometries. Instead the trade-
off is a natural consequence of the split of Y into trace-free and
multiple-of-the-identity parts.

10 T

ernating Solver
——Newton Solver

Relative Residual

KSP Iterations

Figure 6: Convergence of the alternating solver resp. Newton solver.
The abscissa shows number of linear system iterations as a common
measure of time.

4.2 Surface Modeling

For the case of triangle meshes in R*® Sorkine and Alexa [2007]
model a discrete deformation energy which, as in the case of
Liu et al., is a function of df and R, using the same alternating
optimization approach. Here the rotations are chosen at vertices
to be nearest to the cross covariance of original and deformed
edges summed over the incident edges with 2D cotan weights.
(Our R results if the sum is taken over edges incident to a trian-
gle.) As a consequence they incorporate the extrinsic curvature
of the surface and their discrete energy is a mix of membrane and
bending terms. No continuous energy is given and it is unclear
how the bending contribution depends on the geometry or how
its relative weighting with respect to the membrane energy is
determined.

If we modify their energy slightly by summing over all edges
incident to the triangles incident to a given vertex, i.e., we also
add the “rim edges” to their “spoke edges” sum, we arrive at
an energy which can be analyzed. In that case the rotation R!
at vertex i is closest to df integrated over the entire 1-ring of

damping_corot_sidebyside.mp4

Avidemux

Avidemux

Movie showing loss of invariants due to numerical damping in the co-rotational method; smaller times steps (right) can lessen this effect, but not avoid it.

damping5e-3sidebyside.mp4

Avidemux

Avidemux

Movie with variational damping and the variational integrator; damping does not depend on time step size and invariants are preserved

triangles of a given vertex. Using a Taylor series argument one
can then show that the resulting continuous energy differs from
ours by a bending term weighted by r2 where r is the radius of
integration over which R was chosen to be optimal

E :f |df —R|+r?(dR,dRY).
M

As a consequence the bending contribution is dependent on the
mesh element size (r) and goes to zero as the mesh is refined.
(The vanishing of the bending term is not just a concern in the
refinement limit, but is easily noticeable for meshes with strongly
differing discretization rates in different parts of the surface.)
Renormalizing this bending contribution and controlling it with a
user selectable parameter independent of the discretization rate
is an intriguing direction for future research.

Rigid frames in other work Botsch and co-workers [2006] intro-
duced a surface modeling approach in which frames also play
a central role, albeit in a way which is very different from ours.
They represent the surface with a dual, SE(3) valued mesh. Each
dual vertex carries a frame and each dual edge has associated
with it an elastic energy between frames. The energy they for-
mulate unfortunately has no continuum limit. Coming up with
a continuous picture that is akin to what PriMo does would be
quite interesting.

4.3 Geodesic Interpolation in Shape Space

A metric on the space of shapes may be defined with the aid of
the elastic deformation energy. Given two shapes M, and M;, the
distance between them is the length of a geodesic

1
dZ(MO,Ml)zminf J |Y)? | de
"o My

with y ranging over all paths connecting M, and M,. This point
of view was pursued by Kilian et al. [2007] for triangle meshes
in R3. Their model does not derive from an elastic energy, but
can be understood as the squared residuals of a point mass and
spring model with unit coefficients on all edges independent of
how stretched they might be.

We can use our elastic energy to approximate such geodesic paths
as follows. Recall that a “point” M, on a geodesic path from M,
to M is a critical point of the functional

M, = argmin, (1 — t)d*(My, M,) + td*(M,, M,).

As t ranges over [0, 1], M, moves along the geodesic from M,
to M;. We now exploit the fact that the elastic energy agrees
with the geodesic distance to second order since |df, — R,|* =
|Y,|?t2 + h.o.t (for f, : My — M,), to replace the actual geodesic
distance with our energy as a distance approximation

M, := argminy, (1 - t)E(M, — M,)+ tE(M; — M,).

(Here E(M, — M,) denotes the energy of the map from a ref-
erence shape M, to a deformed shape M,.) This generates in-
termediate shapes 1\71[6[0’1], which are static equilibria (for fixed
t) of two weighted non-linear “springs” pulling on the interme-
diate shape from the beginning resp. end configuration. The
corresponding energy minimization problem is no harder than
what we already have. Setting up the gradient and Hessian does
require twice as many evaluations since they are a convex com-
bination ((1 — t) resp. t) of the gradients and Hessians of the
individual energies. Figure 7 shows snapshots of the resulting
trajectory between a straight and twisted/bent beam. One may
now approximate a locally optimal geodesic trajectory arbitrarily
closely by minimizing over more and more intermediate shapes
(as was done by Kilian et al.).

A Simple Geometric Model for Elastic Deformations . 38:5

N

S

2
82
QR

e/

&
oA

Figure 7: Near geodesic interpolation between two shapes using the
elastic energy as an approximation of geodesic distance. See also
the attached movie.

5 Summary

Our paper was motivated by the breadth of successful applica-
tions of Laplacian-like models for many algorithms which appeal
to a physical modeling metaphor. Starting with a smooth model
(Eq. (1)), which captures the core idea, a careful analysis of the
geometric structures underlying it pays off in a number of ways.
The biggest practical payoff comes from the additional term in
the Hessian due to the rotations. It enables a far more efficient
solver (Newton) and is the key to long time stability of our time
integrator. The explicit role of rotations as a footpoint for a dis-
tance computation also illuminates the issue of inverted elements:
one must not accidentally use an orientation reversing orthog-
onal transformation. (This is of course also true for inverted
elements in standard elasticity, though it may not always be as
apparent.) Our analysis also enabled us to make the connection
with the Biot strain, validating intuitions expressed in a variety of
previous work that these models are elasticity-like. In fact, when
implemented correctly, we have a first class elasticity model, with
textbook parameters, for the large displacement/rotation, small
strain regime.

As far as the co-rotational method is concerned our observations
can be interpreted as a prescription for improving existing co-
rotational simulation systems: add the missing Hessian term and
invoke a Newton solver at each time step! Little else would
need changing in existing codes to gain the benefit of increased
stability. (Or, if one wishes, the ability to take much larger time
steps without the usual dissipative effects of doing so.)

In future work the most interesting question for us is that of trian-
gle meshes in R® and how to incorporate a well controlled notion
of thickness, with its attendant bending contribution, without
having to resort to higher order models.

Acknowledgment This work was supported in part by NSF (CCF-
0635112), Caltech’s Center for the Mathematics of Information,
and the DFG Research Center MaTHEON. Additional support was
provided by the Rose Hill Foundation and the IAS at TU Miinchen.

References

BENsON, S., McINNEs, L. C., MORE, J., MUNSON, T, AND SARICH,
J. 2007. TAO User Manual. Tech. Rep. ANL/MCS-TM-242
(Revision 1.9), Argonne National Laboratory.

BroT, M. A. 1938. Theory of Elasticity with Large Displacements
and Rotations. In Proc. Fifth Int. Cong. Appl. Math., John Wiley
& Sons, 117-122.

BoTscH, M., PauLy, M., GrRoss, M., AND KoBBELT, L. 2006. PriMo:
Coupled Prisms for Intuitive Surface Modeling. In Proc. Symp.
Geom. Proc., 11-20.

Etzmul3, O., KECKEISEN, M., AND STRABER, W. 2003. A Fast Finite
Element Solution for Cloth Modeling. In Proc. Pac. Graph.,
244-251.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 38, Publication date: July 2010.

twisty_1_1.mp4

Avidemux

Avidemux

Movie showing interpolation from straight to twisted/bent beam.

http://www.mcs.anl.gov/tao
http://www.pmi.ou.edu/Biot2005/papers/FILES/031.PDF
http://www.pmi.ou.edu/Biot2005/papers/FILES/031.PDF
http://cg.www.techfak.uni-bielefeld.de/publications/papers/sgp06.pdf
http://cg.www.techfak.uni-bielefeld.de/publications/papers/sgp06.pdf
http://doi.ieeecomputersociety.org/10.1109/PCCGA.2003.1238266
http://doi.ieeecomputersociety.org/10.1109/PCCGA.2003.1238266

38:6 . I. Chao et al.

HigHAM, N. J. 1986. Computing the Polar Decomposition—With
Applications. SIAM J. Sci. Stat. Comp. 7, 4, 1160-1174.

IrRVING, G., TERAN, J., AND FEDKIW, R. 2004. Invertible Finite
Elements for Robust Simulation of Large Deformations. In
Proc. Symp. Comp. Anim., 131-140.

KuarevycH, L., WEIWEL Tong, Y, Kanso, E., MARSDEN, J,
SCHRODER, P, AND DESBRUN, M. 2006. Geometric, Variational
Integrators for Computer Animation. In Proc. Symp. Comp.
Anim., 43-52.

Kikuuwg, R., TaBucHI, H., AND YaMAMOTO, M. 2009. An Edge-
based Computationally Efficient Formulation of Saint Venant-
Kirchhoff Tetrahedral Finite Elements. ACM Trans. Graph. 28,
1, 1-13.

KiLian, M., MiTRA, N. J.,, AND PoTTMANN, H. 2007. Geometric
Modeling in Shape Space. ACM Trans. Graph. 26, 3, #64, 1-8.

Liu, L., ZHANG, L., Xu, Y, GoTsMmAN, C., AND GORTLER, S. J. 2008.
A Local/Global Approach to Mesh Parameterization. Comp.
Graph. Forum 27, 5, 1495-1504.

MARSDEN, J. E., AND WEsT, M. 2001. Discrete Mechanics and
Variational Integrators. Acta Numerica, 10, 357-514.

MEYER M., DESBRUN, M., SCHRODER, P, AND BARR, A. 2002. Discrete
Differential-Geometry Operators for Triangulated 2-Manifolds.
In Vis. Math. III. 35-57.

MULLER, M., DORSEY, J., McMIiLLAN, L., JAGNOW, R., AND CUTLER, B.
2002. Stable Real-Time Deformations. In Proc. Symp. Comp.
Anim., 49-54.

MULLER M., HEIDELBERGER, B., TESCHNER, M., AND GROSS, M. 2005.
Meshless Deformations Based on Shape Matching. ACM Trans.
Graph. 24, 3, 471-478.

MYRONENKO, A., AND SONG, X. 2009. On the Closed-Form Solution
of the Rotation Matrix Arising in Computer Vision Problems.
http://arxiv.org/abs/0904.1613v1, 4.

PINKALL, U., AND POLTHIER K. 1993. Computing Discrete Minimal
Surfaces and Their Conjugates. Experiment. Math. 2, 1, 15-36.

RANKIN, C. C., AND BroGaN, E A. 1986. An Element Independent
Corotational Procedure for the Treatment of Large Rotations.
ASME J. Press. Valve Techn. 108, 2, 165-174.

SCHMEDDING, R., AND TESCHNER, M. 2008. Inversion Handling for
Stable Deformable Modeling. Vis. Comp. 24, 7-9 (CGI 2008
Special Issue), 625-633.

SORKINE, O., AND ALEXA, M. 2007. As-rigid-as-possible Surface
Modeling. In Proc. Symp. Geom. Proc., 109-116.

A Matrix Facts

Inner products of 2D and 3D matrices are given by (A,B) =
tr(AT B) with the L,-norm |A|?> = (A,A) used to measure distances
between matrices dist(A, B) = |A — B|. All matrices with positive
determinant possess a unique (right) polar decomposition A = RY
into a rotation R and a symmetric Y = (ATA)"/2. This R is closest
to Ain the L,-norm. This follows from |[RY —R|?> = |Y —I|* and
the L, orthogonality of symmetric and anti-symmetric matrices,
the latter forming the tangent space to SO(n) at the identity.

Inner products involving anti-symmetric matrices can be greatly
simplified. Consider (B,Ay) for arbitrary B and anti-symmetric
Ay. The result depends only on the anti-symmetric part of B,
By = %(B — BT) due to the orthogonality of symmetric and anti-
symmetric matrices. In the 2D case, anti-symmetric matrices
Ay are multiples of J, the rotation by /2, Ay = aJ. We will
denote the extraction of the representative a as X(Ay) = a and
more generally use X(B) = b for extracting the representative
of the anti-symmetric part of an arbitrary B. Hence (B,Ax) =
2X(B)X(Ax). In 3D anti-symmetric matrices can be written as
cross products with suitable vectors a, Ay = ax. Again we use
the notation X(Ay) = a for “pulling out” the representative, this

ACM Transactions on Graphics, Vol. 29, No. 4, Article 38, Publication date: July 2010.

time a 3-vector. Consequently (B,Ay) = 2(X(B),X(Ay)). We
summarize this by writing (B,Ay) = 2(X(B),X(Ay)) in both the
2D and 3D cases.

The representative of the anti-symmetric part of a map could be
computed by first finding the corresponding matrix representa-
tion and then “extracting” the representative as above. Alterna-
tively, and more simply, it can be computed directly from the p
(domain) and q (range) data as the discrete curl of q. For a given
triangle f;; we get

Cijk = (%(ql' +q;),pi;) + (%(Cb‘ +q),) + (%(Qk +q;), Pri)
as the boundary integral (using Stokes’ theorem) of the corre-
sponding piecewise linear interpolant. For maps over 2D triangles
we then get
X(A) = Cijk_

2a;i’
1
i.e., the discrete curl is normalized by the area a; ;. of the triangle
Piji and X(A) becomes its density. For maps over tetrahedra the
3-vector representative of the anti-symmetric part of the map is
also given as a density, this time normalized by the tetrahedron
volume v;j
_ 1
XA) = Kjkl(cklipij + ¢yjiDi + CijPin)-

This expression uses the fact that discrete curls are divergence
free, i.e., they must sum to zero over the boundary of a tetrahe-
dron. Hence four discrete curl values on the faces of a tetrahe-
dron together with the divergence free constraint uniquely fix
the discrete curl 3-vector X(A) associated to the tetrahedron as a
whole.

B Second Variation

To compute the second variation of Eq. (1) we need a formula for
(dg,6,R) = (R"dg,RT 5,R). Noting that R 5,R is anti-symmetric
this reduces to (X(RTdg),X(RT&,R)). X(RTdg) can be computed
directly from knowledge of the back rotated differential dg of the
variation g (see above). All that is needed is an expression for
X(RT5,R).

With df = RY we have dh = 6,df = 6,RY +R6,Y and thus
RT"dh = R"5,RY + 6,Y. In order to get a useful expression for

RT5,R we consider the representative of the anti-symmetric part
of RTdh

X(RTdh) = X(RT6,RY) = %X({RTéhR, Y},

where we used the symbol {.,Y} for the anti-commutator
{A, Y} = AY + YA, dropped §,Y since it is symmetric, and ex-
ploited the anti-symmetry of R §,R for the second equality.

Hence, if we can invert the anti-commutator on its first argument
we get an expression for RT§,R. Indeed, the anti-commutator
{.,Y} has an inverse on the anti-symmetric matrices if Y is posi-
tive semi-definite and no worse than rank deficient by one. De-
note this inverse by W := {.,Y}~!. Treating it as a map between
representatives of anti-symmetric matrices we get
X(RT8,R) = 2W (X(R" dh))

In 2D, W =tr(Y)™! and in 3D, W = (tr(Y)I — Y)~!. The former
follows from simply writing out the expressions while the latter is
easily checked for diagonal Y with at least two positive diagonal
entries. Validity for general symmetric Y then follows after mul-
tiplying the left and right sides with the appropriate coordinate
transformations.

This gives the final representation
(dg, 5,R) = 4 (X(R"dg),X(R"dh)),, ,

where we treat the intervening W as a scalar product weighting.

http://dx.doi.org/10.1137/0907079
http://dx.doi.org/10.1137/0907079
http://physbam.stanford.edu/~fedkiw/papers/stanford2004-04.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2004-04.pdf
http://multires.caltech.edu/pubs/DiscreteLagrangian.pdf
http://multires.caltech.edu/pubs/DiscreteLagrangian.pdf
http://rk.mech.kyushu-u.ac.jp/~kikuuwe/pub/09_tog_draft.pdf
http://rk.mech.kyushu-u.ac.jp/~kikuuwe/pub/09_tog_draft.pdf
http://rk.mech.kyushu-u.ac.jp/~kikuuwe/pub/09_tog_draft.pdf
http://graphics.stanford.edu/~niloy/research/shape_space/shape_space_sig_07.html
http://graphics.stanford.edu/~niloy/research/shape_space/shape_space_sig_07.html
http://www.cs.harvard.edu/~sjg/papers/arap.pdf
http://www.cds.caltech.edu/~marsden/bib/2001/09-MaWe2001/MaWe2001.pdf
http://www.cds.caltech.edu/~marsden/bib/2001/09-MaWe2001/MaWe2001.pdf
http://multires.caltech.edu/pubs/diffGeoOps.pdf
http://multires.caltech.edu/pubs/diffGeoOps.pdf
http://www.matthiasmueller.info/publications/warp.pdf
http://www.cg.inf.ethz.ch/Downloads/Publications/Papers/2005/Mue05/Mue05.pdf
http://arxiv.org/abs/0904.1613v1
http://arxiv.org/abs/0904.1613v1
http://arxiv.org/abs/0904.1613v1
http://www.zib.de/polthier/articles/diri/diri_jem.pdf
http://www.zib.de/polthier/articles/diri/diri_jem.pdf
http://dx.doi.org/10.1115/1.3264765
http://dx.doi.org/10.1115/1.3264765
http://cg.informatik.uni-freiburg.de/publications/inversionHandlingCGI2008.pdf
http://cg.informatik.uni-freiburg.de/publications/inversionHandlingCGI2008.pdf
http://mrl.nyu.edu/~sorkine/ProjectPages/ARAP_modeling/arap_web.pdf
http://mrl.nyu.edu/~sorkine/ProjectPages/ARAP_modeling/arap_web.pdf

	1 The Elastic Energy
	2 Discrete Setting
	2.1 The First Discrete Variation
	2.2 The Closest R
	2.3 The Second Discrete Variation

	3 Elasticity Simulation
	3.1 Relationship to Co-Rotational Methods

	4 Other Applications
	4.1 Parameterization
	4.2 Surface Modeling
	4.3 Geodesic Interpolation in Shape Space

	5 Summary
	A Matrix Facts
	B Second Variation

